
LLNL-JRNL-643953

Progress with the COGENT Edge Kinetic
Code: Implementing theFokker-Plank
Collision Operator

M. Dorf, R. Cohen, M. Dorr, J. Hittinger, T.
Rognlien

September 17, 2013

Contributions to Plasma Physics



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



cpp header will be provided by the publisher 
 

 

∗    Corresponding author: e-mail: dorf1@llnl.gov, Phone: +1 925 422 5181, Fax: +1 925 423 3484 
 

Copyright line will be provided by the publisher 

1 
 
 

 
Progress with the COGENT Edge Kinetic Code: Implementing the 
Fokker-Plank Collision Operator  

 
M. A. Dorf∗ , R. H. Cohen  , M. Dorr, J. Hittinger, and T. D. Rognlien 

Lawrence Livermore National Laboratory, Livermore, CA 94550 USA  
 

Received *** September 2013, revised *** 2013, accepted *** 2013 
Published online *** 2013 

 
Key words Edge, plasma, simulation, kinetic, gyrokinetic. 
PACS 52.65.Tt, 52.55.Rk, 52.65.-y, 52.25.Dg, 52.55.Fa 

 
COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation 
Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) 
discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. 
The distribution function F is discretized in v|| - µ (parallel velocity – magnetic moment) velocity coordinates, and 
the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the 
gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank 
operator to model Coulomb collisions in magnetized edge plasmas. The corresponding Rosenbluth potentials are 
computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of 
the numerical algorithms and results of the initial verification studies are discussed.  
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1 Introduction 
 

The edge of a tokamak is distinguished by a complex magnetic geometry and short radial length scales 
(comparable to particle drift-orbit excursion) for plasma density and temperature variations. Also, the gradient 
length scales along the magnetic field can be comparable to collisional mean free path. As a result, substantial 
deviations from a local Maxwellian distribution can occur, and a full-f kinetic code including the nonlinear 
Fokker-Plank (FP) collision operator is required for adequate modeling of edge plasmas. To avoid the critical 
problem of statistical noise in full-f PIC simulations, the Edge Simulation Laboratory (ESL) collaboration has 
developed a continuum gyro-kinetic code COGENT [1-4], which discretizes a kinetic equation on a phase-space 
grid and employs advanced numerical methods from fluids community [4-5]. COGENT utilizes a fourth-order 
finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (flux 
surface aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy [4-6]. The 
present version of the code models an axisymmetric 4D (R, v||, µ) gyrokinetic equation coupled to the long-
wavelength limit of the gyro-Poisson equation. Here, R denotes the gyrocenter coordinate in the poloidal plane, 
and v|| and µ are the gyrocenter velocity parallel to the magnetic field and the magnetic moment, respectively. In 
our previous studies, we discussed the implementation of various simplified collision models [1] and their 
performance in neoclassical simulations [2]. In this work, we report on the implementation and initial testing of 
the fully nonlinear Fokker-Plank collision operator.   
 Evaluation of the Fokker-Plank operator requires computation of the so-called Rosenbluth potentials 
determined by two coupled elliptic (Poisson) equations in the velocity space. A widely used approach for 
evaluation of the Rosenbluth potentials in magnetized plasmas involves decomposition of a distribution function 
using Legendre polynomials of the v||/v coordinate [7-9]. Here, v=|v| denotes the particle speed. Recently, Pataki 
and Greengard proposed an alternative spectral method [10], which employs fast Fourier transforms in the v||-
direction allowing for very efficient (fast) computation of the Rosenbluth potentials. While such spectral methods 



 M. Dorf et al., Progress with the COGENT Edge Kinetic Code 
 

 

2 

exhibit rapid convergence for smooth velocity distributions characteristic of a tokamak core, the presence of 
velocity-space holes (due to prompt orbit loss) in a tokamak edge can substantially degrade their convergence 
properties. To make use of the advanced grid technologies implemented in COGENT [4-6], which will allow for 
efficient adaptive-mesh-refinement (AMR) treatment of the velocity distributions in a tokamak edge, we develop 
a finite-difference algorithm to solve for the Rosenbluth potentials. Note that iterative schemes used for solving 
such finite-difference approximations can benefit from a good initial guess, for which a solution from a previous 
time-step can be used.  

Evaluation of the Rosenbluth potentials requires solving the Poisson equations in the open velocity space, 
and therefore appropriate boundary conditions should be computed for a finite-domain simulation. While the free-
space (radiation) boundary condition can be naturally implemented when spectral decomposition is involved [9-
10], a finite-difference approach requires the use of the free-space Green’s function method to compute the 
Rosenbluth potentials at the domain boundaries. A direct calculation of the Green’s function integrals, however, 
involves O(N3/2) work, and thus can be computationally more intensive than an iterative solve [11-12]. Here, N is 
the number of velocity grid points used to represent the distribution function. Therefore, we develop an 
approximate method for a fast calculation of the boundary conditions. The method is based on the multipole 
expansion of the Green’s function, and can be highly effective provided the velocity domain boundaries are 
placed sufficiently far outside the particle distribution.  

The paper is organized as follows: The theoretical model of the Fokker-Plank collision operator is 
summarized in Sec. II. Details of the simulation model including the multipole-expansion boundary conditions 
and their implementation are discussed in Sec. III. Finally, the results of initial verification studies are presented 
in Sec. IV.  

 
2 Fokker-Plank collision operator  

 
Neglecting finite-Larmor-radius effects and considering, for simplicity, single-species collisions, the Fokker-
Plank operator takes on the following form in the (v|| , µ) coordinates 

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

Γ∂
+

∂

Γ∂
=

µ
µ

||

||

v
LFC v .                                                                 (1) 

Here, F(R, v||, µ) is a gyrocenter distribution function, L=λc(4πq2/m)2 is the logarithmic factor, λc denotes the 
Coulomb logarithm, and q and m correspond to the species charge and mass, respectively. The collisional fluxes 
in Eq. (1) are given by  
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and the corresponding drag-diffusion coefficients are specified as  

||
|| v

HAv ∂

∂
= , 

µ
µµ ∂

∂
=

H
B
mA 2 , 

2
||

2

|||| v
GD vv ∂

∂
−= , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

−=
µµ

µµµµ

GG
B
mD 2

2

2

2

22 , 
||

2

2
|||| v

G
B
mDD vv ∂∂

∂
−==

µ
µµµ

. (4) 

Here, B is the magnetic field strength, and the Rosenbluth potentials H and G are determined from  
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Note that Eqs. (5)-(6) represent the Poisson equations in the 3D velocity space, i.e., ΔvH=F and ΔvG=H, written in 
the (v||, µ) coordinates for the case where the gyro-angle dependence is ignored. 
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3 Simulation model 
 

COGENT adopts the standard numerical algorithms developed as part of the Hypre library [31] for solving Eqs. 
(5)-(6). These algorithms require specification of the Rosenbluth potentials at the boundaries of the simulation 
domain. Making use of the free-space Green’s functions method, it is straightforward to show that the Rosenbluth 
potentials at the domain boundaries are given by  
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where, vbnd is the velocity coordinate at the domain boundary, and Ω∞ denotes the infinite 3D velocity space. As 
mentioned earlier, the computational work required for direct calculations of the integrals in Eqs. (7) and (8) can 
be more intensive than that required to solve Eqs. (5)-(6). Therefore, we develop an asymptotic method, based on 
the multipole-expansion analysis, which can significantly reduce the computational work required to evaluate the 
boundary conditions in Eqs. (7)-(8).    
 

3.1 Multipole-expansion boundary conditions for the first Rosenbluth potential H 
 

The implementation of the multipole-expansion boundary conditions for the first Rosenbluth potential is 
straightforward and is based on the expansion of the Green’s function in Eq. (7) in spherical harmonics [14],  
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Here, Ylm is the spherical harmonic function, θ=arcos(v||/v) is the pitch angle, φ is the gyro-angle, v> = max{|v|,|v'|}, 
and v< = min{|v|,|v'|}. Making use of Eqs. (9) and (7), it follows that 
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where Pl are the Legendre polynomials, and the multipole moments hl are given by  
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Here, Ωc is the computational v|| - µ domain, v=|v| denotes the particle speed, and it is assumed that the distribution 
function F is zero for |v|>Vmin, where Vmin≡min{|vbnd|} is the minimal absolute value of the velocity coordinate on 
the computational domain boundary, ∂Ωc. Note that the COGENT velocity grid is represented by a uniform 
rectangular grid, and |vbnd| varies along the domain boundary.  
 Equations (10)-(11) constitute the multipole-expansion boundary conditions for the first Rosenbluth 
potential, H. Note that the multipole moments [Eq. (11)] correspond to the decomposition of a distribution 
function in the Legendre polynomial basis, and therefore may have degraded decaying properties in a tokamak 
edge (as discussed in Sec. I). However, fast convergence of the multipole-expansion boundary conditions [in Eq. 
(10)] is mediated by the presence of 1/vl+1 coefficients, which exhibit rapid decay for the case where the domain 
boundary is located sufficiently far from the core of the distribution function.  
 

    3.2 Multipole-expansion boundary conditions for the second Rosenbluth potential G 
 
The second Rosenbluth potential is also determined from the Poisson equation with the right-hand-side given by 
the first Rosenbluth potential, i.e., ΔvG=H (see Sec. II). Therefore, by analogy with Eq. (7), it readily follows that 

  ( ) ( ) v
vv

vv ʹ′
ʹ′−

ʹ′
−= ∫

∞Ω

3

4
1 dHG

bnd
bnd π

.                                                            (12) 

However, the analysis described in Sec. 3.1 for the case of the first Rosenbluth potential cannot be directly 
applied  
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Fig. 1   Implementation of the multipole-expansion boundary conditions. (a) Schematic of the first Rosenbluth potential, 
H(v), decomposition used for the evaluation of the free-space Green’s function integral [in Eqs. (12) and (13)]. (b) Schematic 
of the cut-cell issue.  

to Eq. (12). The difference appears due to the fact that the first Rosenbluth potential H(v) in Eq. (12) is a slowly 
decaying function, H~1/v, whereas the distribution function F(v) in Eq. (7) decays rapidly for typical plasma 
physics problems, e.g., F~exp[-(v/vth)2]. Accordingly, while the distribution function F(v) satisfies the condition 
of zero (or, negligibly small) F(v) for |v|>Vmin within the computational domain, the same is not true for H(v). 
Moreover, it is straightforward to show that neglecting a slowly decaying tail of H(v) outside some arbitrary large 
(but finite) domain (with rectangular boundaries in v|| and µ) will lead to an erroneous computation of G(v). 
Therefore, in order to evaluate the multipole-expansion boundary conditions for the second Rosenbluth potential 
on a compact computational domain, we decompose the integral in Eq. (12) as [see Fig. 1(a)] 
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where Hdom(v) is the numerical solution for the first Rosenbluth potential [in Eqs. (5), (10), and (11)] on the 
computational domain, and Hmult(v) is the multipole expansion of H(v), i.e., 
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Following the analysis in Sec. 3.1 we can now represent the first term on the right-hand-side of Eq. (13) as 
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where the multipole moments gl are given by  
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and Ĥdom(v) is defined by Ĥdom(v)=Hdom(v) for v≤Vmin and Ĥdom(v)=0 for v>Vmin. Making use of Eqs. (9) and (14), it 
is straightforward to show that the second term on the right-hand-side of Eq. (13) can be represented as   
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Note that in deriving Eq. (17) we ignored the diverging contribution from the upper-limit (i.e., v→∞) of v-
integration for l=0 because it only contributes an arbitrary constant to the free-space solution of Eq. (5). This 
constant vanishes when the drag-diffusion coefficients in Eq. (4) are evaluated, and therefore can be ignored. 
Collecting the results in Eqs. (15)-(17), we readily obtain 

( )
( )

( )θ
π

cos1
12
12

244
1

0
1

2

11 l
l

l
bnd

min
l

bnd

l
l

bnd

l
bnd PV

l
l

l
hgG ∑

∞

=
+−+ ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

+
−−=

vvv
v .                         (18) 



cpp header will be provided by the publisher 
 
5 

 
    3.3 Implementation  

 
Presently, a second-order discretization scheme is employed to evaluate the Rosenbluth potentials in Eqs. (5)-(6) 
subject to the boundary conditions in Eqs. (10)-(11), (16), and (18). Note that for this order of discretization the 
cut-cell issues [Fig. 1(b)] associated with the evaluation of the integral in Eq. (16) do not introduce a significant 
challenge. The contribution to the integral in Eq. (16) from the cut cells is the order O(N-1/2). Therefore, the 
second-order accurate representation of the cut-cell contributions can be achieved by calculating the integral in Eq. 
(16) over a cut cell as (2πB/m)KccSlin. Here, Kcc is the cell-centered value of the integrand in Eq. (16) with Hdom(v) 
being used instead of Ĥdom(v), and Slin is the part of the cell area lying under the curve v=Vmin, where the curve 
shape is approximated (within the cell) by a straight line [Fig. 1(b)].  
 A fourth-order finite volume method is then used to evaluate the Fokker-Plank operator in Eqs. (1)-(4). 
Note that the resulting accuracy of a simulation corresponds to the accuracy of the lowest-order algorithm 
involved in the numerical implementation, and is, therefore, presently only of second order. Improving the order 
of a discretization scheme for the Rosenbluth potentials evaluation (from 2nd order to 4th order) involves more 
detailed analysis of the cut-cell issues and is currently underway.   
 

4 Results of initial testing  
 
Several initial verification studies of the Fokker-Plank collision model employed in COGENT are reported. 
Figures 2 and 3 illustrate the results of the Rosenbluth potentials evaluation. For the test-case presented in Fig. 2, 
we adopt an isotropic normalized distribution function F̅(v̅) [Fig. 2(a)] defined by F̅(v̅)=1-|v̅|2 for |v̅|≤1, and 
F̅(v̅)=0 for |v̅|>1, where v̅ is the normalized particle speed. Due to distribution isotropy only the term l=0 needs to 
be retained in the multipole-expansion boundary conditions. The results of the COGENT simulations for the 
second Rosenbluth potential [Fig. 2(b)] are compared with the free-space analytical solution to Eqs. (5)-(6), and 
second-order accuracy of the numerical solution is demonstrated [Fig. 2(c)].  

The asymptotic convergence of the multipole-expansion boundary conditions is illustrated in Fig. 3. For 
this test-case, the normalized distribution function in Fig. 2(a) is shifted in the direction of the normalized parallel 
velocity by v̅0=0.35 [Fig. 3(a)]. As expected, the numerical solution for the Rosenbluth potentials converges to the 
correspondingly “shifted” analytical free-space solution provided a sufficient number of multipole terms is 
retained in the multipole-expansion boundary conditions [Figs. 3(b) and 3(c)].   
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2   COGENT evaluation of the Rosenbluth potentials. Shown are (a) the normalized distribution function F̅(v̅); (b) the 
normalized COGENT solution for the second Rosenbluth potential [Eq. (6)]; and (c) the numerical error (blue dots) defined by 
the maximal difference between the analytical and COGENT solutions to Eq. (6). The cell size parameter, h, is measured by 
1/N1/2, where N is the total number of velocity grid points to represent the distribution function and the same number of grid 
points in v|| and µ directions is used in the simulations. The simulations are performed for N1/2 ={32,64,128,256}. The red line 
corresponds to a second-order convergence rate.  
  
 After testing the evaluation of the Rosenbluth potentials, we now perform more comprehensive 
verification studies, in which Maxwellian relaxation of an arbitrary distribution function is investigated [Fig. 4]. 
For this test, the gyro-kinetic advection operator is turned-off, and the simulation model is given by     

[ ]FCtF =∂∂ ,                                                                      (19) 

where C[F] is the Fokker-Plank collision operator specified in Sec. 2. The initial distribution function is taken to 
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be F(v)=Aexp(-B|v|4), where A and B are the normalization constants. Figure 4 shows that the distribution relaxes 
to a Maxwellian distribution with the same energy and parallel momentum. In addition, second-order accuracy in 
energy conservation is demonstrated [Fig. 4(c)]. 

  

 

 

 

 

 

 

 
 

Fig. 3   Convergence of the multipole-expansion boundary conditions. Shows are (a) the normalized distribution function 
F̅(v); (b) the normalized COGENT solution for the second Rosenbluth potential [Eq. (6)]; and (c) the numerical error defined by 
the maximum difference between the analytical and COGENT solutions to Eq. (6). The simulations are performed for N1/2=128 
(with the same number of grid points in v|| and µ directions), and the error saturation in frame (c) corresponds to the finite 
(second-order) accuracy of the numerical discretization shown in Fig. 2(c).  

 

 

 

 

 
 
 
 
 
 
 
 
 

Fig. 4   Verification studies of the Fokker-Plank operator: Maxwellian relaxation. Shown are (a) time-evolution of the 
maximum value of the distribution function F(v); (b) v||-slice of the distribution function corresponding to the time instances of 
t=0 (green curve) and t=4 (blue dots), and a Maxwellian distribution fit (pink line); and (c) normalized energy error (blue 
diamonds) accumulated over a time period of t=4 for the grid resolutions corresponding to N1/2=32, 64, and 128 (with the same 
number of grid points in v|| and µ directions). The energy error ΔE is normalized to the corresponding initial value, E. The red 
line corresponds to a second-order convergence rate. The results in Frames (a) and (b) are obtained using N1/2=128. 

 
4 Conclusion  

 
We report on extending the COGENT code capabilities by including the fully nonlinear Fokker-Plank collision 
model for edge plasma simulations. The presence of velocity-space holes in a tokamak edge plasma distribution 
may significantly degrade the converging properties of spectral techniques, which are often used for the 
evaluation of the FP operator in a tokamak core. This issue motivates development of finite-difference schemes 
that can significantly benefit from the AMR capabilities that are provided by the CHOMBO framework [6] on 
which COGENT is built. Here, for preliminary studies we develop a finite-difference algorithm for evaluating the 
Rosenbluth potentials on a uniform (v||-µ) grid. Evaluation of the Rosenbluth potentials requires solving two 
Poisson equations in the open velocity space, and therefore the appropriate boundary conditions should be 
computed for a finite-domain simulation. In contrast to the numerical schemes involving spectral decomposition, 
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finite-difference algorithms lack natural free-space boundary conditions. As a result, the Rosenbluth potentials 
have to be evaluated at the domain boundaries by making use of the free-space Green’s function method. 
However, direct computation of the corresponding Green’s function integral can be computationally more 
intensive than the iterative solve itself, and thus we develop a multipole-expansion-based approach for evaluating 
the boundary conditions. The approach is implemented in COGENT and is successfully verified. Potential 
numerical error introduced by “cut-cells” related to the natural coordinates of the multipole-expansion (i.e., v and 
v||/v) not being conformal to the (v||, µ) COGENT grid, is pointed out and discussed. 
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